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Stress-induced anisotropy of phosphorous islands on gallium arsenide
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The initial growth of(2x4) phosphorous islands ddx2) terraces of gallium arsenid®01) has

been studied. The islands grow anisotropically in fi&0] direction with an aspect ratio of
approximately 8 to 1 at moderate coverages. The distribution of island widths|[idX8gdirection

follows a Gaussian function. The mean width increases from@tb 47+11 A as the phosphorous
coverage increases from 0.10 to 0.85 monolayers. Evidently, the island anisotropy is caused by
stress imposed on the underlying gallium layer by the smaller, more tightly bound phosphorous
dimers. © 2000 American Institute of Physids$S0003-695(00)01640-5

Metalorganic vapor phase epitaxfOVPE) and mo- rection, because of a buildup of compressive stress on the
lecular beam epitaxy have been used extensively for thgallium sublattice.
growth of compound semiconductor heterostructures and The samples were prepared by growing gallium arsenide
superlattices:? Since the interface smoothness is greatly in-films, 0.5um thick, on GaAg001) substrates in an MOVPE
fluenced by the surface morphology during growth, it is im-reactor’ After growth, the samples were transferred directly
portant to understand what physical and chemical processésto an ultrahigh vacuum chamber with a base pressure of
control this property of the material. For example, atomic2.0x 10 ° Torr. The GaAs(001) crystals were annealed at
layer epitaxy and migration enhanced epitaxy have beei@93 K for 30 min to obtain a clean and well-ordered gallium-
shown to improved surface morpholog§.In these tech- rich (4x2)/c(8%X2) reconstructior,and this was verified
nigues, the group Il and V atoms are alternately supplied tdy low-energy electron diffraction and STM.
the substrate to enhance the surface mobility of adsorbed Phosphine and arsine were introduced into the chamber
species. In order to fabricate a heterojunction or superlatticegt 1X10°° Torr through a leak valve for 20-100 min
one must alternate the composition of the compound semi1.2—6.0<10* L, 1 L=10 ® Torr9). During the adsorption
conductor film, in many cases by switching the group Vexperiments, all the filaments in the chamber were turned
elements. This can introduce stress into the film. Whileoff. It was important to do this, otherwise the molecules
numerous studies have been made of the nucleation ardissociated on the filament and caused, Pét AsH,, and H
growth of homoepitaxial films;’ not many have focused fragments to adsorb onto the surface and yield anomalous
on the growth of heterogeneous epitaxial compoundesults. Scanning tunneling micrographs were obtained after

semiconductor§. dosing to different coverages at a sample bias frofh0 to
In this article, we present a study of the initial stages of—4.0 V and a tunneling current of 0.5 rTA.
phosphorous island growth on the gallium-rich Ga882)- Shown in Fig. 1a) is a filled-states STM image taken

(4x2) surface. The group V elements were deposited by deafter depositing 0.10 monolayef$iL) of phosphorous at
composing phosphine on the surface in ultrahigh vacuum @10 °C. The phosphorous generates islands that exhibit a
temperatures between 310 and 380 °C. Using scanning turi2x4) reconstruction. Th&2x4) is distinguished by light
neling microscopy(STM), we found that the phosphorous gray rows that extend for a short distance in ta&0] direc-
islands grow primarily in th¢110] direction, with a width  tion and repeat every 16 A in tH&10] direction. The gray
varying between 24 and 48 A in thel10] direction. To intensity is associated with the filled lone pairs of electrons
compare this to the homoepitaxy of gallium arsenide, wen the dangling bonds of the phosphorous dimers. Examina-
have studied the formation of arsenic islands on #%2)  tion of the STM image reveals that some of t#&x4) is-
surface via the decomposition of arsine. In this case, théands extend for long distances parallel to [ih&0] axis. By
island anisotropy is much less, about 2 to 1. We propose thajontrast their average width is25 A. The aspect ratio is
the phosphorous island growth is restricted in [th&0] di-  about 30 to 1 for the islands seen in Figa)l Inspection of
many different surfaces with coverages ranging from 0.1 to

dAuthor to whom correspondence should be addressed; electronic maip'5 ML_ yields an average aspect ratio of 8 to 1 for the P-rich
rhicks@ucla.edu (2% 4) islands.
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FIG. 1. Scanning tunneling micrographs of the phosphorous<{2ct¥)
islands on GaAg001)-(4x2) surfacesi(a) 6p=0.10 ML andT =310 °C;
(b) 6p=0.85 ML and Ty,=380°C; and insetf#p=0.25 ML and
Tae=380 °C. The image areas a@ 1160x1160 &, (b) 13001300 &,
and inset 4260420 A2

In Fig. 1(b), we present a filled-states STM image of the
GaAs(001) surface after depositing 0.85 ML of phosphorous
at 380 °C. Here, the surface is covered by a series of narrow '3
(2x4) islands separated by slender gaps 20-40 A across

The islands are for the most part continuous in [h&Q]
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FIG. 2. The probability distribution of the island width in t[@lO] direc-
tion at 380 °C.

islands, as indicated by the white arrows. The lines are ap-
proximately one monolayer deép.3 A), and are found ad-
jacent to both the As-rich and P-rid2X4) islands. These
results indicate that gallium atoms have diffused out of the
(4X2) surface. This is not surprising, because the Ga cover-
age on g4x2) surface is 0.75 MI*? However, for the group
V-rich islands to grow on top of the Ga-rich surface, an
additional;—3 ML of Ga is required for the nucleation of the
B2(2x4) or a(2x4) phases, respectively. It is observed
that the step edges quickly saturate wi#x4) islands upon
deposition of phosphorous or arsenic. Evidently, the step
edges are a ready source of gallium atoms for build4)
islands.

Presented in Fig. 2 are distributions of the width of the
(2X4) islands as a function of phosphorous coverage, after
dosing PH at 380°C. The plots were constructed by mea-
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direction. Notice that the gaps disappear near the step edge
so that this region is nearly completely covered by (@&4)
reconstructior(see bracketed regigpnThe same experiments
described above were repeated for arsenic deposition on th
GaAs (4x2) surface at 380°C. In this case, the As-rich
(2x4) islands exhibit much less anisotropy, and randomly
cover the surface. An aspect ratio of about 2 to 1 is observec
at As coverages from 0.05 to 0.65 ML.

Shown in the insert of Fig.(b) is a small scale STM
image of(2x4) islands on th€4x2) at a phosphorous cov-
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TABLE |. Comparison of the bonding properties of adsorbed phosphorous(2>< N) structure is formed with equa"y spaced vacancy

arsenic, and antimony dimers on Gaf@91)-(4x2). lines perpendicular to the dimer bondsHere, the vacancy
Ref. p_p AS—As Sb—Sh lines relieve the stress on t_he underl_ymg layer. _

In our case, a different interface is formed depending on

Covalent radii(A) 16 1.28 1.39 1.59 . . S
Dimer bond lengthA)  17.18  2.23 550 » 66 vyhether phosphorous or arsenic is deposited on the gallium
(onInP  (on GaA$ (on Sb—GaAs rich GaAs(001) surface. In Table I, we compare the stress at
Dimer bond strength 16 490 382 299 the interface for three group V elements: P, As, and Sb. The
(kcal/mo)) phosphorous atoms exhibit the shortest dimer bond length
Ga back bond strength 16 230 210 209 and the strongest backbonds to gallitfin'® Consequently,
(keal/mo) Gap  (GaAs (Gash the phosphorous displaces the second-layer Ga atoms the
Second layer Ga—-Ga 17-19 3.58 3.73 . L. L .
distance(A) (on GaA$ (on Sb-Gaas  Most from their bulk positions, whiclsi4 A apart. Since the
(in [110] direction stress builds up as each additional P dimer is attached in the

[110] direction, a critical value will be reached where the
strain energy prevents further growth. On the other hand,
suring the widths of over 400 islands in a series of STMSince the As and Sb dimers impose less stress on the subsur-

images corresponding to each coverage. The experimentiice gallium atoms, they produ¢@x4) islands with much
results are shown as data points, and the dashed, solid, alfver anisotropy”” It should be noted that the phosphorous-
dashed-dotted lines are Gaussian fits of the data with théch (2x4) islands can extend long distances along[tE0]

function crystal axis, because the stress in this direction is relieved by
dimer vacancies and trenches.
A x—xc|? These results highlight the role that stress plays in the
y= o2 exp-0. o ' heteroepitaxy of compound semiconductor thin films. A bet-

ter understanding of this phenomenon could lead to new

wherex, is the meang is the variance, and is the total  ethods of generating nanostructures by MOVPE.
area under the curve.
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